Skip to main content

C++ Data Structures

C/C++ arrays allow you to define variables that combine several data items of the same kind but structure is another user defined data type which allows you to combine data items of different kinds.
Structures are used to represent a record, suppose you want to keep track of your books in a library. You might want to track the following attributes about each book:
  • Title
  • Author
  • Subject
  • Book ID

Defining a Structure:

To define a structure, you must use the struct statement. The struct statement defines a new data type, with more than one member, for your program. The format of the struct statement is this:
struct [structure tag]
{
member definition
;
member definition
;
...
member definition
;
} [one or more structure variables];
The structure tag is optional and each member definition is a normal variable definition, such as int i; or float f; or any other valid variable definition. At the end of the structure's definition, before the final semicolon, you can specify one or more structure variables but it is optional. Here is the way you would declare the Book structure:
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
}book;

Accessing Structure Members:

To access any member of a structure, we use the member access operator (.). The member access operator is coded as a period between the structure variable name and the structure member that we wish to access. You would use struct keyword to define variables of structure type. Following is the example to explain usage of structure:
#include <iostream>
#include <cstring>

using namespace std;

struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
};

int main( )
{
struct Books Book1; // Declare Book1 of type Book
struct Books Book2; // Declare Book2 of type Book

// book 1 specification
strcpy
( Book1.title, "Learn C++ Programming");
strcpy
( Book1.author, "Chand Miyan");
strcpy
( Book1.subject, "C++ Programming");
Book1.book_id = 6495407;

// book 2 specification
strcpy
( Book2.title, "Telecom Billing");
strcpy
( Book2.author, "Yakit Singha");
strcpy
( Book2.subject, "Telecom");
Book2.book_id = 6495700;

// Print Book1 info
cout
<< "Book 1 title : " << Book1.title <<endl;
cout
<< "Book 1 author : " << Book1.author <<endl;
cout
<< "Book 1 subject : " << Book1.subject <<endl;
cout
<< "Book 1 id : " << Book1.book_id <<endl;

// Print Book2 info
cout
<< "Book 2 title : " << Book2.title <<endl;
cout
<< "Book 2 author : " << Book2.author <<endl;
cout
<< "Book 2 subject : " << Book2.subject <<endl;
cout
<< "Book 2 id : " << Book2.book_id <<endl;

return 0;
}
When the above code is compiled and executed, it produces the following result:
Book 1 title : Learn C++ Programming
Book 1 author : Chand Miyan
Book 1 subject : C++ Programming
Book 1 id : 6495407
Book 2 title : Telecom Billing
Book 2 author : Yakit Singha
Book 2 subject : Telecom
Book 2 id : 6495700

Structures as Function Arguments:

You can pass a structure as a function argument in very similar way as you pass any other variable or pointer. You would access structure variables in the similar way as you have accessed in the above example:
#include <iostream>
#include <cstring>

using namespace std;
void printBook( struct Books book );

struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
};

int main( )
{
struct Books Book1; // Declare Book1 of type Book
struct Books Book2; // Declare Book2 of type Book

// book 1 specification
strcpy
( Book1.title, "Learn C++ Programming");
strcpy
( Book1.author, "Chand Miyan");
strcpy
( Book1.subject, "C++ Programming");
Book1.book_id = 6495407;

// book 2 specification
strcpy
( Book2.title, "Telecom Billing");
strcpy
( Book2.author, "Yakit Singha");
strcpy
( Book2.subject, "Telecom");
Book2.book_id = 6495700;

// Print Book1 info
printBook
( Book1 );

// Print Book2 info
printBook
( Book2 );

return 0;
}
void printBook( struct Books book )
{
cout
<< "Book title : " << book.title <<endl;
cout
<< "Book author : " << book.author <<endl;
cout
<< "Book subject : " << book.subject <<endl;
cout
<< "Book id : " << book.book_id <<endl;
}
When the above code is compiled and executed, it produces the following result:
Book title : Learn C++ Programming
Book author : Chand Miyan
Book subject : C++ Programming
Book id : 6495407
Book title : Telecom Billing
Book author : Yakit Singha
Book subject : Telecom
Book id : 6495700

Pointers to Structures:

You can define pointers to structures in very similar way as you define pointer to any other variable as follows:
struct Books *struct_pointer;
Now, you can store the address of a structure variable in the above defined pointer variable. To find the address of a structure variable, place the & operator before the structure's name as follows:
struct_pointer = &Book1;
To access the members of a structure using a pointer to that structure, you must use the -> operator as follows:
struct_pointer->title;
Let us re-write above example using structure pointer, hope this will be easy for you to understand the concept:
#include <iostream>
#include <cstring>

using namespace std;
void printBook( struct Books *book );

struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
};

int main( )
{
struct Books Book1; // Declare Book1 of type Book
struct Books Book2; // Declare Book2 of type Book

// Book 1 specification
strcpy
( Book1.title, "Learn C++ Programming");
strcpy
( Book1.author, "Chand Miyan");
strcpy
( Book1.subject, "C++ Programming");
Book1.book_id = 6495407;

// Book 2 specification
strcpy
( Book2.title, "Telecom Billing");
strcpy
( Book2.author, "Yakit Singha");
strcpy
( Book2.subject, "Telecom");
Book2.book_id = 6495700;

// Print Book1 info, passing address of structure
printBook
( &Book1 );

// Print Book1 info, passing address of structure
printBook
( &Book2 );

return 0;
}
// This function accept pointer to structure as parameter.
void printBook( struct Books *book )
{
cout
<< "Book title : " << book->title <<endl;
cout
<< "Book author : " << book->author <<endl;
cout
<< "Book subject : " << book->subject <<endl;
cout
<< "Book id : " << book->book_id <<endl;
}
When the above code is compiled and executed, it produces the following result:
Book title : Learn C++ Programming
Book author : Chand Miyan
Book subject : C++ Programming
Book id : 6495407
Book title : Telecom Billing
Book author : Yakit Singha
Book subject : Telecom
Book id : 6495700

The typedef Keyword

There is an easier way to define structs or you could "alias" types you create. For example:
typedef struct
{
char title[50];
char author[50];
char subject[100];
int book_id;
}Books;
Now, you can use Books directly to define variables of Books type without using struct keyword. Following is the example:
Books Book1, Book2;
You can use typedef keyword for non-structs as well as follows:
typedef long int *pint32;

pint32 x
, y, z;
x, y and z are all pointers to long ints

Comments

Popular posts from this blog

PERL Some good framework

1. Catalyst is the most popular agile Perl MVC web framework that encourages rapid development and clean design without getting in your way. Catalyst | Perl MVC web application framework 2. Mojolicious is a next generation web framework for the Perl programming language. Back in the early days of the web, many people learned Perl because of a wonderful Perl   ... Mojolicious - Perl real-time web framework 3. Documents for Perl  The Perl Archive Network, the gateway to all things Perl. The canonical location for Perl code and modules. The Comprehensive Perl Archive Network - www. cpan .org

C++ How to use Date and Time

The C++ standard library does not provide a proper date type. C++ inherits the structs and functions for date and time manipulation from C. To access date and time related functions and structures, you would need to include <ctime> header file in your C++ program. There are four time-related types: clock_t, time_t, size_t , and tm . The types clock_t, size_t and time_t are capable of representing the system time and date as some sort of integer. The structure type tm holds the date and time in the form of a C structure having the following elements: struct tm { int tm_sec ; // seconds of minutes from 0 to 61 int tm_min ; // minutes of hour from 0 to 59 int tm_hour ; // hours of day from 0 to 24 int tm_mday ; // day of month from 1 to 31 int tm_mon ; // month of year from 0 to 11 int tm_year ; // year since 1900 int tm_wday ; // days since sunday int tm_yday ; // days since January 1st int tm_isdst ; // hours of daylight savin...

Lambda Function with Amazon DynamoDB

DynamoDB can trigger AWS Lambda when the data in added to the tables, updated or deleted. In this chapter, we will work on a simple example that will add items to the DynamoDB table and AWS Lambda which will read the data and send mail with the data added. Requisites To use Amazon DB and AWS Lambda, we need to follow the steps as shown below − Create a table in DynamoDB with primary key Create a role which will have permission to work with DynamoDBand AWS Lambda. Create function in AWS Lambda AWS Lambda Trigger to send mail Add data in DynamoDB Let us discuss each of this step in detail. Example We are going to work out on following example which shows the basic interaction between DynamoDB and AWS Lambda. This example will help you to understand the following operations − Creating a table called customer in Dynamodb table and how to enter data in that table. Triggering AWS Lambda function once the data is entered and sending mail using Amazon SES service. The basic block diagram that ...