Skip to main content

C++ HOw to use arrays

C++ provides a data structure, the array, which stores a fixed-size sequential collection of elements of the same type. An array is used to store a collection of data, but it is often more useful to think of an array as a collection of variables of the same type.
Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare one array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent individual variables. A specific element in an array is accessed by an index.
All arrays consist of contiguous memory locations. The lowest address corresponds to the first element and the highest address to the last element.

Declaring Arrays:

To declare an array in C++, the programmer specifies the type of the elements and the number of elements required by an array as follows:
type arrayName [ arraySize ];
This is called a single-dimension array. The arraySize must be an integer constant greater than zero and type can be any valid C++ data type. For example, to declare a 10-element array called balance of type double, use this statement:
double balance[10];

Initializing Arrays:

You can initialize C++ array elements either one by one or using a single statement as follows:
double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
The number of values between braces { } can not be larger than the number of elements that we declare for the array between square brackets [ ]. Following is an example to assign a single element of the array:
If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if you write:
double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};
You will create exactly the same array as you did in the previous example.
balance[4] = 50.0;
The above statement assigns element number 5th in the array a value of 50.0. Array with 4th index will be 5th, i.e., last element because all arrays have 0 as the index of their first element which is also called base index.

Accessing Array Elements:

An element is accessed by indexing the array name. This is done by placing the index of the element within square brackets after the name of the array. For example:
double salary = balance[9];
The above statement will take 10th element from the array and assign the value to salary variable. Following is an example, which will use all the above-mentioned three concepts viz. declaration, assignment and accessing arrays:
#include <iostream>
using namespace std;

#include <iomanip>
using std::setw;

int main ()
{
int n[ 10 ]; // n is an array of 10 integers

// initialize elements of array n to 0
for ( int i = 0; i < 10; i++ )
{
n
[ i ] = i + 100; // set element at location i to i + 100
}
cout
<< "Element" << setw( 13 ) << "Value" << endl;

// output each array element's value
for ( int j = 0; j < 10; j++ )
{
cout
<< setw( 7 )<< j << setw( 13 ) << n[ j ] << endl;
}

return 0;
}
This program makes use of setw() function to format the output. When the above code is compiled and executed, it produces the following result:
Element        Value
0 100
1 101
2 102
3 103
4 104
5 105
6 106
7 107
8 108
9 109

C++ Arrays in Detail:

Arrays are important to C++ and should need lots of more detail. There are following few important concepts, which should be clear to a C++ programmer:
ConceptDescription
Multi-dimensional arraysC++ supports multidimensional arrays. The simplest form of the multidimensional array is the two-dimensional array.
Pointer to an arrayYou can generate a pointer to the first element of an array by simply specifying the array name, without any index.
Passing arrays to functionsYou can pass to the function a pointer to an array by specifying the array's name without an index.
Return array from functionsC++ allows a function to return an array.

Comments

Popular posts from this blog

C++ How to use Date and Time

The C++ standard library does not provide a proper date type. C++ inherits the structs and functions for date and time manipulation from C. To access date and time related functions and structures, you would need to include <ctime> header file in your C++ program. There are four time-related types: clock_t, time_t, size_t , and tm . The types clock_t, size_t and time_t are capable of representing the system time and date as some sort of integer. The structure type tm holds the date and time in the form of a C structure having the following elements: struct tm { int tm_sec ; // seconds of minutes from 0 to 61 int tm_min ; // minutes of hour from 0 to 59 int tm_hour ; // hours of day from 0 to 24 int tm_mday ; // day of month from 1 to 31 int tm_mon ; // month of year from 0 to 11 int tm_year ; // year since 1900 int tm_wday ; // days since sunday int tm_yday ; // days since January 1st int tm_isdst ; // hours of daylight savin...

C++ References

A reference variable is an alias, that is, another name for an already existing variable. Once a reference is initialized with a variable, either the variable name or the reference name may be used to refer to the variable. C++ References vs Pointers: References are often confused with pointers but three major differences between references and pointers are: You cannot have NULL references. You must always be able to assume that a reference is connected to a legitimate piece of storage. Once a reference is initialized to an object, it cannot be changed to refer to another object. Pointers can be pointed to another object at any time. A reference must be initialized when it is created. Pointers can be initialized at any time. Creating References in C++: Think of a variable name as a label attached to the variable's location in memory. You can then think of a reference as a second label attached to that memory location. Therefore, you can access the contents of the variabl...

Lambda Function with Amazon SNS

  Amazon SNS is a service used for push notification. In this chapter, we will explain working of AWS Lambda and Amazon SNS with the help of an example where will perform the following actions − Create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch Send SNS text message on phone number given. Requisites To create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch, we need not follow the steps given below − Create Topic in SNS Create Role for permission in IAM Create AWS Lambda Function Publish to topic to activate trigger Check the message details in CloudWatch service. To send SNS text message on phone number given, we need to do the following − Add code in AWS Lambda to send message to your phone. Example In this example, we will create a topic in SNS. When details are entered in the topic to publish, AWS Lambda is triggered. The topic details are logged in CloudWatch and a message is sent on phone by AWS Lambda. Here is a basic block diagram which...