Skip to main content

C++ How to use functions

A function is a group of statements that together perform a task. Every C++ program has at least one function, which is main(), and all the most trivial programs can define additional functions.
You can divide up your code into separate functions. How you divide up your code among different functions is up to you, but logically the division usually is so each function performs a specific task.
A function declaration tells the compiler about a function's name, return type, and parameters. A function definition provides the actual body of the function.
The C++ standard library provides numerous built-in functions that your program can call. For example, function strcat() to concatenate two strings, function memcpy() to copy one memory location to another location and many more functions.
A function is knows as with various names like a method or a sub-routine or a procedure etc.

Defining a Function:

The general form of a C++ function definition is as follows:
return_type function_name( parameter list )
{
body of the
function
}
A C++ function definition consists of a function header and a function body. Here are all the parts of a function:
  • Return Type: A function may return a value. The return_type is the data type of the value the function returns. Some functions perform the desired operations without returning a value. In this case, the return_type is the keyword void.
  • Function Name: This is the actual name of the function. The function name and the parameter list together constitute the function signature.
  • Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value to the parameter. This value is referred to as actual parameter or argument. The parameter list refers to the type, order, and number of the parameters of a function. Parameters are optional; that is, a function may contain no parameters.
  • Function Body: The function body contains a collection of statements that define what the function does.

Example:

Following is the source code for a function called max(). This function takes two parameters num1 and num2 and returns the maximum between the two:
// function returning the max between two numbers

int max(int num1, int num2)
{
// local variable declaration
int result;

if (num1 > num2)
result
= num1;
else
result
= num2;

return result;
}

Function Declarations:

A function declaration tells the compiler about a function name and how to call the function. The actual body of the function can be defined separately.
A function declaration has the following parts:
return_type function_name( parameter list );
For the above defined function max(), following is the function declaration:
int max(int num1, int num2);
Parameter names are not importan in function declaration only their type is required, so following is also valid declaration:
int max(int, int);
Function declaration is required when you define a function in one source file and you call that function in another file. In such case, you should declare the function at the top of the file calling the function.

Calling a Function:

While creating a C++ function, you give a definition of what the function has to do. To use a function, you will have to call or invoke that function.
When a program calls a function, program control is transferred to the called function. A called function performs defined task and when its return statement is executed or when its function-ending closing brace is reached, it returns program control back to the main program.
To call a function, you simply need to pass the required parameters along with function name, and if function returns a value, then you can store returned value. For example:
#include <iostream>
using namespace std;

// function declaration
int max(int num1, int num2);

int main ()
{
// local variable declaration:
int a = 100;
int b = 200;
int ret;

// calling a function to get max value.
ret
= max(a, b);

cout
<< "Max value is : " << ret << endl;

return 0;
}

// function returning the max between two numbers
int max(int num1, int num2)
{
// local variable declaration
int result;

if (num1 > num2)
result
= num1;
else
result
= num2;

return result;
}
I kept max() function along with main() function and compiled the source code. While running final executable, it would produce the following result:
Max value is : 200

Function Arguments:

If a function is to use arguments, it must declare variables that accept the values of the arguments. These variables are called the formal parameters of the function.
The formal parameters behave like other local variables inside the function and are created upon entry into the function and destroyed upon exit.
While calling a function, there are two ways that arguments can be passed to a function:
Call TypeDescription
Call by valueThis method copies the actual value of an argument into the formal parameter of the function. In this case, changes made to the parameter inside the function have no effect on the argument.
Call by pointerThis method copies the address of an argument into the formal parameter. Inside the function, the address is used to access the actual argument used in the call. This means that changes made to the parameter affect the argument.
Call by referenceThis method copies the reference of an argument into the formal parameter. Inside the function, the reference is used to access the actual argument used in the call. This means that changes made to the parameter affect the argument.
By default, C++ uses call by value to pass arguments. In general, this means that code within a function cannot alter the arguments used to call the function and above mentioned example while calling max() function used the same method.

Default Values for Parameters:

When you define a function, you can specify a default value for each of the last parameters. This value will be used if the corresponding argument is left blank when calling to the function.
This is done by using the assignment operator and assigning values for the arguments in the function definition. If a value for that parameter is not passed when the function is called, the default given value is used, but if a value is specified, this default value is ignored and the passed value is used instead. Consider the following example:
#include <iostream>
using namespace std;

int sum(int a, int b=20)
{
int result;

result
= a + b;

return (result);
}

int main ()
{
// local variable declaration:
int a = 100;
int b = 200;
int result;

// calling a function to add the values.
result
= sum(a, b);
cout
<< "Total value is :" << result << endl;

// calling a function again as follows.
result
= sum(a);
cout
<< "Total value is :" << result << endl;

return 0;
}
When the above code is compiled and executed, it produces the following result:
Total value is :300
Total value is :120

Comments

Popular posts from this blog

Lambda Function with Amazon SNS

  Amazon SNS is a service used for push notification. In this chapter, we will explain working of AWS Lambda and Amazon SNS with the help of an example where will perform the following actions − Create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch Send SNS text message on phone number given. Requisites To create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch, we need not follow the steps given below − Create Topic in SNS Create Role for permission in IAM Create AWS Lambda Function Publish to topic to activate trigger Check the message details in CloudWatch service. To send SNS text message on phone number given, we need to do the following − Add code in AWS Lambda to send message to your phone. Example In this example, we will create a topic in SNS. When details are entered in the topic to publish, AWS Lambda is triggered. The topic details are logged in CloudWatch and a message is sent on phone by AWS Lambda. Here is a basic block diagram which exp

Unix / Linux - Shell Functions

W e will discuss in detail about the shell functions. Functions enable you to break down the overall functionality of a script into smaller, logical subsections, which can then be called upon to perform their individual tasks when needed. Using functions to perform repetitive tasks is an excellent way to create  code reuse . This is an important part of modern object-oriented programming principles. Shell functions are similar to subroutines, procedures, and functions in other programming languages. Creating Functions To declare a function, simply use the following syntax − function_name () { list of commands } The name of your function is  function_name , and that's what you will use to call it from elsewhere in your scripts. The function name must be followed by parentheses, followed by a list of commands enclosed within braces. Example Following example shows the use of function − #!/bin/sh # Define your function here Hello () { echo "Hello World" } # Invoke yo

Unix / Linux - Shell Input/Output Redirections

W e will discuss in detail about the Shell input/output redirections. Most Unix system commands take input from your terminal and send the resulting output back to your terminal. A command normally reads its input from the standard input, which happens to be your terminal by default. Similarly, a command normally writes its output to standard output, which is again your terminal by default. Output Redirection The output from a command normally intended for standard output can be easily diverted to a file instead. This capability is known as output redirection. If the notation > file is appended to any command that normally writes its output to standard output, the output of that command will be written to file instead of your terminal. Check the following  who  command which redirects the complete output of the command in the users file. $ who > users Notice that no output appears at the terminal. This is because the output has been redirected from the default standard output dev