Skip to main content

C++ How to use pointers

C++ pointers are easy and fun to learn. Some C++ tasks are performed more easily with pointers, and other C++ tasks, such as dynamic memory allocation, cannot be performed without them.
As you know every variable is a memory location and every memory location has its address defined which can be accessed using ampersand (&) operator which denotes an address in memory. Consider the following which will print the address of the variables defined:
#include <iostream>

using namespace std;

int main ()
{
int var1;
char var2[10];

cout
<< "Address of var1 variable: ";
cout
<< &var1 << endl;

cout
<< "Address of var2 variable: ";
cout
<< &var2 << endl;

return 0;
}
When the above code is compiled and executed, it produces result something as follows:
Address of var1 variable: 0xbfebd5c0
Address of var2 variable: 0xbfebd5b6

What Are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable or constant, you must declare a pointer before you can work with it. The general form of a pointer variable declaration is:
type *var-name;
Here, type is the pointer's base type; it must be a valid C++ type and var-name is the name of the pointer variable. The asterisk you used to declare a pointer is the same asterisk that you use for multiplication. However, in this statement the asterisk is being used to designate a variable as a pointer. Following are the valid pointer declaration:
int    *ip;    // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float
char *ch // pointer to character
The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a long hexadecimal number that represents a memory address. The only difference between pointers of different data types is the data type of the variable or constant that the pointer points to.

Using Pointers in C++:

There are few important operations, which we will do with the pointers very frequently. (a) we define a pointer variables (b) assign the address of a variable to a pointer and (c) finally access the value at the address available in the pointer variable. This is done by using unary operator * that returns the value of the variable located at the address specified by its operand. Following example makes use of these operations:
#include <iostream>

using namespace std;

int main ()
{
int var = 20; // actual variable declaration.
int *ip; // pointer variable

ip
= &var; // store address of var in pointer variable

cout
<< "Value of var variable: ";
cout
<< var << endl;

// print the address stored in ip pointer variable
cout
<< "Address stored in ip variable: ";
cout
<< ip << endl;

// access the value at the address available in pointer
cout
<< "Value of *ip variable: ";
cout
<< *ip << endl;

return 0;
}
When the above code is compiled and executed, it produces result something as follows:
Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

C++ Pointers in Detail:

Pointers have many but easy concepts and they are very important to C++ programming. There are following few important pointer concepts which should be clear to a C++ programmer:
ConceptDescription
C++ Null PointersC++ supports null pointer, which is a constant with a value of zero defined in several standard libraries.
C++ pointer arithmeticThere are four arithmetic operators that can be used on pointers: ++, --, +, -
C++ pointers vs arraysThere is a close relationship between pointers and arrays. Let us check how?
C++ array of pointersYou can define arrays to hold a number of pointers.
C++ pointer to pointerC++ allows you to have pointer on a pointer and so on.
Passing pointers to functionsPassing an argument by reference or by address both enable the passed argument to be changed in the calling function by the called function.
Return pointer from functionsC++ allows a function to return a pointer to local variable, static variable and dynamically allocated memory as well.

Comments

Popular posts from this blog

C++ How to use Date and Time

The C++ standard library does not provide a proper date type. C++ inherits the structs and functions for date and time manipulation from C. To access date and time related functions and structures, you would need to include <ctime> header file in your C++ program. There are four time-related types: clock_t, time_t, size_t , and tm . The types clock_t, size_t and time_t are capable of representing the system time and date as some sort of integer. The structure type tm holds the date and time in the form of a C structure having the following elements: struct tm { int tm_sec ; // seconds of minutes from 0 to 61 int tm_min ; // minutes of hour from 0 to 59 int tm_hour ; // hours of day from 0 to 24 int tm_mday ; // day of month from 1 to 31 int tm_mon ; // month of year from 0 to 11 int tm_year ; // year since 1900 int tm_wday ; // days since sunday int tm_yday ; // days since January 1st int tm_isdst ; // hours of daylight savin...

PERL Some good framework

1. Catalyst is the most popular agile Perl MVC web framework that encourages rapid development and clean design without getting in your way. Catalyst | Perl MVC web application framework 2. Mojolicious is a next generation web framework for the Perl programming language. Back in the early days of the web, many people learned Perl because of a wonderful Perl   ... Mojolicious - Perl real-time web framework 3. Documents for Perl  The Perl Archive Network, the gateway to all things Perl. The canonical location for Perl code and modules. The Comprehensive Perl Archive Network - www. cpan .org

PHP Error and Exception Handling

Error handling is the process of catching errors raised by your program and then taking appropriate action. If you would handle errors properly then it may lead to many unforeseen consequences. Its very simple in PHP to handle an errors. Using die() function: While wirting your PHP program you should check all possible error condition before going ahead and take appropriate action when required. Try following example without having /tmp/test.xt file and with this file. <?php if(!file_exists("/tmp/test.txt")) { die("File not found"); } else { $file=fopen("/tmp/test.txt","r"); print "Opend file sucessfully"; } // Test of the code here. ?> This way you can write an efficient code. Using abive technique you can stop your program whenever it errors out and display more meaningful and user friendly meassage. Defining Custom Error Handling Function: You can write your own function to handling any error. PHP provides y...