Skip to main content

C++ How to use pointers

C++ pointers are easy and fun to learn. Some C++ tasks are performed more easily with pointers, and other C++ tasks, such as dynamic memory allocation, cannot be performed without them.
As you know every variable is a memory location and every memory location has its address defined which can be accessed using ampersand (&) operator which denotes an address in memory. Consider the following which will print the address of the variables defined:
#include <iostream>

using namespace std;

int main ()
{
int var1;
char var2[10];

cout
<< "Address of var1 variable: ";
cout
<< &var1 << endl;

cout
<< "Address of var2 variable: ";
cout
<< &var2 << endl;

return 0;
}
When the above code is compiled and executed, it produces result something as follows:
Address of var1 variable: 0xbfebd5c0
Address of var2 variable: 0xbfebd5b6

What Are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable or constant, you must declare a pointer before you can work with it. The general form of a pointer variable declaration is:
type *var-name;
Here, type is the pointer's base type; it must be a valid C++ type and var-name is the name of the pointer variable. The asterisk you used to declare a pointer is the same asterisk that you use for multiplication. However, in this statement the asterisk is being used to designate a variable as a pointer. Following are the valid pointer declaration:
int    *ip;    // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float
char *ch // pointer to character
The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a long hexadecimal number that represents a memory address. The only difference between pointers of different data types is the data type of the variable or constant that the pointer points to.

Using Pointers in C++:

There are few important operations, which we will do with the pointers very frequently. (a) we define a pointer variables (b) assign the address of a variable to a pointer and (c) finally access the value at the address available in the pointer variable. This is done by using unary operator * that returns the value of the variable located at the address specified by its operand. Following example makes use of these operations:
#include <iostream>

using namespace std;

int main ()
{
int var = 20; // actual variable declaration.
int *ip; // pointer variable

ip
= &var; // store address of var in pointer variable

cout
<< "Value of var variable: ";
cout
<< var << endl;

// print the address stored in ip pointer variable
cout
<< "Address stored in ip variable: ";
cout
<< ip << endl;

// access the value at the address available in pointer
cout
<< "Value of *ip variable: ";
cout
<< *ip << endl;

return 0;
}
When the above code is compiled and executed, it produces result something as follows:
Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

C++ Pointers in Detail:

Pointers have many but easy concepts and they are very important to C++ programming. There are following few important pointer concepts which should be clear to a C++ programmer:
ConceptDescription
C++ Null PointersC++ supports null pointer, which is a constant with a value of zero defined in several standard libraries.
C++ pointer arithmeticThere are four arithmetic operators that can be used on pointers: ++, --, +, -
C++ pointers vs arraysThere is a close relationship between pointers and arrays. Let us check how?
C++ array of pointersYou can define arrays to hold a number of pointers.
C++ pointer to pointerC++ allows you to have pointer on a pointer and so on.
Passing pointers to functionsPassing an argument by reference or by address both enable the passed argument to be changed in the calling function by the called function.
Return pointer from functionsC++ allows a function to return a pointer to local variable, static variable and dynamically allocated memory as well.

Comments

Popular posts from this blog

Lambda Function with Amazon SNS

  Amazon SNS is a service used for push notification. In this chapter, we will explain working of AWS Lambda and Amazon SNS with the help of an example where will perform the following actions − Create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch Send SNS text message on phone number given. Requisites To create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch, we need not follow the steps given below − Create Topic in SNS Create Role for permission in IAM Create AWS Lambda Function Publish to topic to activate trigger Check the message details in CloudWatch service. To send SNS text message on phone number given, we need to do the following − Add code in AWS Lambda to send message to your phone. Example In this example, we will create a topic in SNS. When details are entered in the topic to publish, AWS Lambda is triggered. The topic details are logged in CloudWatch and a message is sent on phone by AWS Lambda. Here is a basic block diagram which exp

Unix / Linux - Shell Functions

W e will discuss in detail about the shell functions. Functions enable you to break down the overall functionality of a script into smaller, logical subsections, which can then be called upon to perform their individual tasks when needed. Using functions to perform repetitive tasks is an excellent way to create  code reuse . This is an important part of modern object-oriented programming principles. Shell functions are similar to subroutines, procedures, and functions in other programming languages. Creating Functions To declare a function, simply use the following syntax − function_name () { list of commands } The name of your function is  function_name , and that's what you will use to call it from elsewhere in your scripts. The function name must be followed by parentheses, followed by a list of commands enclosed within braces. Example Following example shows the use of function − #!/bin/sh # Define your function here Hello () { echo "Hello World" } # Invoke yo

Unix / Linux - Shell Input/Output Redirections

W e will discuss in detail about the Shell input/output redirections. Most Unix system commands take input from your terminal and send the resulting output back to your terminal. A command normally reads its input from the standard input, which happens to be your terminal by default. Similarly, a command normally writes its output to standard output, which is again your terminal by default. Output Redirection The output from a command normally intended for standard output can be easily diverted to a file instead. This capability is known as output redirection. If the notation > file is appended to any command that normally writes its output to standard output, the output of that command will be written to file instead of your terminal. Check the following  who  command which redirects the complete output of the command in the users file. $ who > users Notice that no output appears at the terminal. This is because the output has been redirected from the default standard output dev