Skip to main content

C++ How to use Strings

C++ provides following two types of string representations:
  • The C-style character string.
  • The string class type introduced with Standard C++.

The C-Style Character String:

The C-style character string originated within the C language and continues to be supported within C++. This string is actually a one-dimensional array of characters which is terminated by a null character '\0'. Thus a null-terminated string contains the characters that comprise the string followed by a null.
The following declaration and initialization create a string consisting of the word "Hello". To hold the null character at the end of the array, the size of the character array containing the string is one more than the number of characters in the word "Hello."
char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
If you follow the rule of array initialization, then you can write the above statement as follows:
char greeting[] = "Hello";

Actually, you do not place the null character at the end of a string constant. The C++ compiler automatically places the '\0' at the end of the string when it initializes the array. Let us try to print above-mentioned string:
#include <iostream>

using namespace std;

int main ()
{
char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

cout
<< "Greeting message: ";
cout
<< greeting << endl;

return 0;
}
When the above code is compiled and executed, it produces result something as follows:
Greeting message: Hello
C++ supports a wide range of functions that manipulate null-terminated strings:
S.N.Function & Purpose
1strcpy(s1, s2);
Copies string s2 into string s1.
2strcat(s1, s2);
Concatenates string s2 onto the end of string s1.
3strlen(s1);
Returns the length of string s1.
4strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.
5strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in string s1.
6strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string s1.
Following example makes use of few of the above-mentioned functions:
#include <iostream>
#include <cstring>

using namespace std;

int main ()
{
char str1[10] = "Hello";
char str2[10] = "World";
char str3[10];
int len ;

// copy str1 into str3
strcpy
( str3, str1);
cout
<< "strcpy( str3, str1) : " << str3 << endl;

// concatenates str1 and str2
strcat
( str1, str2);
cout
<< "strcat( str1, str2): " << str1 << endl;

// total lenghth of str1 after concatenation
len
= strlen(str1);
cout
<< "strlen(str1) : " << len << endl;

return 0;
}
When the above code is compiled and executed, it produces result something as follows:
strcpy( str3, str1) : Hello
strcat
( str1, str2): HelloWorld
strlen
(str1) : 10

The String Class in C++:

The standard C++ library provides a string class type that supports all the operations mentioned above, additionally much more functionality. We will study this class in C++ Standard Library but for now let us check following example:
At this point, you may not understand this example because so far we have not discussed Classes and Objects. So can have a look and proceed until you have understanding on Object Oriented Concepts.
#include <iostream>
#include <string>

using namespace std;

int main ()
{
string str1 = "Hello";
string str2 = "World";
string str3;
int len ;

// copy str1 into str3
str3
= str1;
cout
<< "str3 : " << str3 << endl;

// concatenates str1 and str2
str3
= str1 + str2;
cout
<< "str1 + str2 : " << str3 << endl;

// total lenghth of str3 after concatenation
len
= str3.size();
cout
<< "str3.size() : " << len << endl;

return 0;
}
When the above code is compiled and executed, it produces result something as follows:
str3 : Hello
str1
+ str2 : HelloWorld
str3
.size() : 10

Comments

Popular posts from this blog

C++ How to use Date and Time

The C++ standard library does not provide a proper date type. C++ inherits the structs and functions for date and time manipulation from C. To access date and time related functions and structures, you would need to include <ctime> header file in your C++ program. There are four time-related types: clock_t, time_t, size_t , and tm . The types clock_t, size_t and time_t are capable of representing the system time and date as some sort of integer. The structure type tm holds the date and time in the form of a C structure having the following elements: struct tm { int tm_sec ; // seconds of minutes from 0 to 61 int tm_min ; // minutes of hour from 0 to 59 int tm_hour ; // hours of day from 0 to 24 int tm_mday ; // day of month from 1 to 31 int tm_mon ; // month of year from 0 to 11 int tm_year ; // year since 1900 int tm_wday ; // days since sunday int tm_yday ; // days since January 1st int tm_isdst ; // hours of daylight savin...

C++ References

A reference variable is an alias, that is, another name for an already existing variable. Once a reference is initialized with a variable, either the variable name or the reference name may be used to refer to the variable. C++ References vs Pointers: References are often confused with pointers but three major differences between references and pointers are: You cannot have NULL references. You must always be able to assume that a reference is connected to a legitimate piece of storage. Once a reference is initialized to an object, it cannot be changed to refer to another object. Pointers can be pointed to another object at any time. A reference must be initialized when it is created. Pointers can be initialized at any time. Creating References in C++: Think of a variable name as a label attached to the variable's location in memory. You can then think of a reference as a second label attached to that memory location. Therefore, you can access the contents of the variabl...

Lambda Function with Amazon SNS

  Amazon SNS is a service used for push notification. In this chapter, we will explain working of AWS Lambda and Amazon SNS with the help of an example where will perform the following actions − Create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch Send SNS text message on phone number given. Requisites To create Topic in SNS Service and use AWS Lambda Add Topics to CloudWatch, we need not follow the steps given below − Create Topic in SNS Create Role for permission in IAM Create AWS Lambda Function Publish to topic to activate trigger Check the message details in CloudWatch service. To send SNS text message on phone number given, we need to do the following − Add code in AWS Lambda to send message to your phone. Example In this example, we will create a topic in SNS. When details are entered in the topic to publish, AWS Lambda is triggered. The topic details are logged in CloudWatch and a message is sent on phone by AWS Lambda. Here is a basic block diagram which...