Skip to main content

TensorFlow : Install Docker Image (CPU)

 Install TensorFlow which is the Machine Learning Library.

On this example, Install TensorFlow official Docker Image without GPU support and run it on Containers.

[1].  Install Podman, refer to here.

[2]. Install TensorFlow Docker (CPU only).

# pull TensorFlow 2.0 with Python3 image

[cent@dlp ~]$ podman pull tensorflow/tensorflow:2.0.0-py3

[cent@dlp ~]$ podman images

REPOSITORY                        TAG         IMAGE ID       CREATED        SIZE

docker.io/tensorflow/tensorflow   2.0.0-py3   90f5cb97b18f   9 months ago   1.09 GB


# run container

[cent@dlp ~]$ podman run --rm tensorflow/tensorflow:2.0.0-py3 \

python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

2020-07-22 05:21:27.138093: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2801480000 Hz

2020-07-22 05:21:27.138647: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x34ccfe0 executing computations on platform Host. Devices:

2020-07-22 05:21:27.138671: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): Host, Default Version

tf.Tensor(1074.4442, shape=(), dtype=float32)


# create Hello World test script and run it on container

[cent@dlp ~]$ vi hello_tensorflow.py

import tensorflow as tf

hello = tf.constant('Hello, TensorFlow World!')

tf.print(hello)


[cent@dlp ~]$ podman run --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow:2.0.0-py3 python ./hello_tensorflow.py

2020-07-22 05:23:36.928319: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2801480000 Hz

2020-07-22 05:23:36.928717: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x4add050 executing computations on platform Host. Devices:

2020-07-22 05:23:36.928738: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): Host, Default Version

Hello, TensorFlow World!

[3]. If SELinux is enabled, change pilicy.

[root@dlp ~]# vi my-python.te

# create new

module my-python 1.0;


require {

        type user_home_t;

        type container_t;

        type user_home_dir_t;

        class file { create ioctl open read unlink write };

        class dir { add_name remove_name write };

}


#============= container_t ==============

allow container_t user_home_dir_t:dir { add_name remove_name write };

allow container_t user_home_dir_t:file { create ioctl open read unlink write };

allow container_t user_home_t:file { ioctl open read };


[root@dlp ~]# checkmodule -m -M -o my-python.mod my-python.te

[root@dlp ~]# semodule_package --outfile my-python.pp --module my-python.mod

[root@dlp ~]# semodule -i my-python.pp

[4] Install TensorFlow Docker Image with Jupyter Notebook.

# pull TensorFlow 2.0 with Python3/Jupyter image

[cent@dlp ~]$ podman pull tensorflow/tensorflow:2.0.0-py3-jupyter

[cent@dlp ~]$ podman images

REPOSITORY                        TAG                 IMAGE ID       CREATED        SIZE

docker.io/tensorflow/tensorflow   2.0.0-py3-jupyter   c652a4fc8a4f   9 months ago   1.24 GB

docker.io/tensorflow/tensorflow   2.0.0-py3           90f5cb97b18f   9 months ago   1.09 GB


# run container as daemon

[cent@dlp ~]$ podman run -dt -p 8888:8888 tensorflow/tensorflow:2.0.0-py3-jupyter

1d54bcba3f14eef778a45332b825b6dedd9efb7c8926fde76a5c81cbaed09947


[cent@dlp ~]$ podman ps

CONTAINER ID  IMAGE                                              COMMAND               CREATED        STATUS            PORTS                   NAMES

1d54bcba3f14  docker.io/tensorflow/tensorflow:2.0.0-py3-jupyter  bash -c source /e...  6 seconds ago  Up 6 seconds ago  0.0.0.0:8888->8888/tcp  vigorous_blackburn


# confirm URL

[cent@dlp ~]$ podman exec 1d54bcba3f14 bash -c "jupyter notebook list"

Currently running servers:

http://0.0.0.0:8888/?token=2b1641a43d5bca23758e6cc1d1979cf3fd4003ba52f8ee4b :: /tf

Comments

Popular posts from this blog

PERL Some good framework

1. Catalyst is the most popular agile Perl MVC web framework that encourages rapid development and clean design without getting in your way. Catalyst | Perl MVC web application framework 2. Mojolicious is a next generation web framework for the Perl programming language. Back in the early days of the web, many people learned Perl because of a wonderful Perl   ... Mojolicious - Perl real-time web framework 3. Documents for Perl  The Perl Archive Network, the gateway to all things Perl. The canonical location for Perl code and modules. The Comprehensive Perl Archive Network - www. cpan .org

C++ How to use Date and Time

The C++ standard library does not provide a proper date type. C++ inherits the structs and functions for date and time manipulation from C. To access date and time related functions and structures, you would need to include <ctime> header file in your C++ program. There are four time-related types: clock_t, time_t, size_t , and tm . The types clock_t, size_t and time_t are capable of representing the system time and date as some sort of integer. The structure type tm holds the date and time in the form of a C structure having the following elements: struct tm { int tm_sec ; // seconds of minutes from 0 to 61 int tm_min ; // minutes of hour from 0 to 59 int tm_hour ; // hours of day from 0 to 24 int tm_mday ; // day of month from 1 to 31 int tm_mon ; // month of year from 0 to 11 int tm_year ; // year since 1900 int tm_wday ; // days since sunday int tm_yday ; // days since January 1st int tm_isdst ; // hours of daylight savin...

Lambda Function with Amazon DynamoDB

DynamoDB can trigger AWS Lambda when the data in added to the tables, updated or deleted. In this chapter, we will work on a simple example that will add items to the DynamoDB table and AWS Lambda which will read the data and send mail with the data added. Requisites To use Amazon DB and AWS Lambda, we need to follow the steps as shown below − Create a table in DynamoDB with primary key Create a role which will have permission to work with DynamoDBand AWS Lambda. Create function in AWS Lambda AWS Lambda Trigger to send mail Add data in DynamoDB Let us discuss each of this step in detail. Example We are going to work out on following example which shows the basic interaction between DynamoDB and AWS Lambda. This example will help you to understand the following operations − Creating a table called customer in Dynamodb table and how to enter data in that table. Triggering AWS Lambda function once the data is entered and sending mail using Amazon SES service. The basic block diagram that ...