Skip to main content

Unix / Linux - Shell Loop Control

We will discuss shell loop control in Unix. So far you have looked at creating loops and working with loops to accomplish different tasks. Sometimes you need to stop a loop or skip iterations of the loop.

we will learn following two statements that are used to control shell loops−

  • The break statement
  • The continue statement
The infinite Loop

All the loops have a limited life and they come out once the condition is false or true depending on the loop.

A loop may continue forever if the required condition is not met. A loop that executes forever without terminating executes for an infinite number of times. For this reason, such loops are called infinite loops.

Example

Here is a simple example that uses the while loop to display the numbers zero to nine −

#!/bin/sh

a
=10

until [ $a -lt 10 ]
do
echo $a
a
=`expr $a + 1`
done

This loop continues forever because a is always greater than or equal to 10 and it is never less than 10.

The break Statement

The break statement is used to terminate the execution of the entire loop, after completing the execution of all of the lines of code up to the break statement. It then steps down to the code following the end of the loop.

Syntax

The following break statement is used to come out of a loop −

break

The break command can also be used to exit from a nested loop using this format −

break n

Here n specifies the nth enclosing loop to the exit from.

Example

Here is a simple example which shows that loop terminates as soon as a becomes 5 −

#!/bin/sh

a
=0

while [ $a -lt 10 ]
do
echo $a
if [ $a -eq 5 ]
then
break
fi
a
=`expr $a + 1`
done

Upon execution, you will receive the following result −

0
1
2
3
4
5

Here is a simple example of nested for loop. This script breaks out of both loops if var1 equals 2 and var2 equals 0 −


#!/bin/sh

for var1 in 1 2 3
do
for var2 in 0 5
do
if [ $var1 -eq 2 -a $var2 -eq 0 ]
then
break 2
else
echo
"$var1 $var2"
fi
done
done

Upon execution, you will receive the following result. In the inner loop, you have a break command with the argument 2. This indicates that if a condition is met you should break out of outer loop and ultimately from the inner loop as well.

1 0
1 5


The continue statement

The continue statement is similar to the break command, except that it causes the current iteration of the loop to exit, rather than the entire loop.

This statement is useful when an error has occurred but you want to try to execute the next iteration of the loop.

Syntax
continue

Like with the break statement, an integer argument can be given to the continue command to skip commands from nested loops.

continue n

Here n specifies the nth enclosing loop to continue from.

Example

The following loop makes use of the continue statement which returns from the continue statement and starts processing the next statement −


#!/bin/sh

NUMS
="1 2 3 4 5 6 7"

for NUM in $NUMS
do
Q
=`expr $NUM % 2`
if [ $Q -eq 0 ]
then
echo
"Number is an even number!!"
continue
fi
echo
"Found odd number"
done

Upon execution, you will receive the following result −

Found odd number
Number is an even number!!
Found odd number
Number is an even number!!
Found odd number
Number is an even number!!
Found odd number

Comments

Popular posts from this blog

PERL Some good framework

1. Catalyst is the most popular agile Perl MVC web framework that encourages rapid development and clean design without getting in your way. Catalyst | Perl MVC web application framework 2. Mojolicious is a next generation web framework for the Perl programming language. Back in the early days of the web, many people learned Perl because of a wonderful Perl   ... Mojolicious - Perl real-time web framework 3. Documents for Perl  The Perl Archive Network, the gateway to all things Perl. The canonical location for Perl code and modules. The Comprehensive Perl Archive Network - www. cpan .org

C++ How to use Date and Time

The C++ standard library does not provide a proper date type. C++ inherits the structs and functions for date and time manipulation from C. To access date and time related functions and structures, you would need to include <ctime> header file in your C++ program. There are four time-related types: clock_t, time_t, size_t , and tm . The types clock_t, size_t and time_t are capable of representing the system time and date as some sort of integer. The structure type tm holds the date and time in the form of a C structure having the following elements: struct tm { int tm_sec ; // seconds of minutes from 0 to 61 int tm_min ; // minutes of hour from 0 to 59 int tm_hour ; // hours of day from 0 to 24 int tm_mday ; // day of month from 1 to 31 int tm_mon ; // month of year from 0 to 11 int tm_year ; // year since 1900 int tm_wday ; // days since sunday int tm_yday ; // days since January 1st int tm_isdst ; // hours of daylight savin...

Lambda Function with Amazon DynamoDB

DynamoDB can trigger AWS Lambda when the data in added to the tables, updated or deleted. In this chapter, we will work on a simple example that will add items to the DynamoDB table and AWS Lambda which will read the data and send mail with the data added. Requisites To use Amazon DB and AWS Lambda, we need to follow the steps as shown below − Create a table in DynamoDB with primary key Create a role which will have permission to work with DynamoDBand AWS Lambda. Create function in AWS Lambda AWS Lambda Trigger to send mail Add data in DynamoDB Let us discuss each of this step in detail. Example We are going to work out on following example which shows the basic interaction between DynamoDB and AWS Lambda. This example will help you to understand the following operations − Creating a table called customer in Dynamodb table and how to enter data in that table. Triggering AWS Lambda function once the data is entered and sending mail using Amazon SES service. The basic block diagram that ...